Two Case Studies of Proton Exchange Membrane (PEM) Fuel Cell Installations

United States Army Corps of Engineers
ERDC/CERL

Nicholas M. Josefik

Melissa K. White, Franklin H. Holcomb, Scott M. Lux, James Knight, Dr. Michael J. Binder

2005 Fuel Cell Seminar

Palm Springs, CA 14-18 November 2005

Presentation Outline

- Introduction to PEM Demonstration
- Fort Lewis Army Base, WA
- Montana Army National Guard, MT
- Questions

DoD Residential PEM Demonstration BAA Requirements

- "Domestically Produced" PEM Units, 1 kW to 20 kW
- US Military Facilities/Embassies, etc.
- Turn-key Packages Requested
- Maximum Diversity Desired
- 1 Year of "Fuel Cell Power" Required
 - (90% Availability)

DoD Residential PEM Demonstration

- 83 PEM units at 42 sites
- Funding:

✓ FY04 ~\$ 1.6M

FY03 ~\$ 3.6M

✓ FY02 ~\$ 3.4M

✓ FY01 ~\$ 3.6M

No Cost-Share Required

FY01-FY03 Residential PEM Project Sites

FY01-FY03 Residential PEM Program Manufacturer Unit Totals

Fiscal Year	Plug Power (No. Units)	ReliOn, Inc. Formerly Avista Labs (No. Units)	IdaTech (No. Units)	Nuvera (No. Units)	Totals (No. Units)
FY01	20	1	0	0	21
FY02	23	1	0	2	26
FY03	14	11	4	0	29
Totals	57	13	4	2	76

DoD Residential PEM Program

Fleet Performance Summary

January 15, 2002 - October 31, 2005

Program Performance Matrix

Program Year	Total Run Hours	Availability (%)	Capacity Factor (%)	Total Energy Produced (kWe-hrs)	Average Output (kW)	Electrical Efficiency (%)
FY01	171,826	89.4%	47.3%	450,547	2.62	23.6%
FY02	184,521	88.4%	43.8%	461,061	2.50	24.1%
FY03	87,521	82.8%	27.0%	200,192	2.29	23.6%
Program Totals/Averages	443,868	87.6%	33.2%	1,111,801	2.50	23.8%

DoD Residential PEM Program

Fleet Performance Summary January 15, 2002 - October 31, 2005

Electrical Efficiency

Natural Gas	24.13%
i ididi di Odo	

H	ydrogen	27.83%

Propane 23.08%

Thermal Efficiency

Natural Gas 10.66%

Propane 9.22%

DoD Residential PEM Program

Fleet Performance Summary January 15, 2002 - October 31, 2005

Scheduled Outages

Num	ber of Outages	123
	boi of oatagoo	

Total Duration 5,8	58U	Hrs
---------------------------	------------	-----

Mean Time 47.81 Hrs

Unscheduled Outages

N	um	ber of	utages	719	
Ш		DCI CI	atages	115	4

Total Duration 37,459 Hrs

Mean Time 52.10 Hrs

Demonstration Purpose

- Simulate DC Powered System with Battery Backup
- Demonstrate Fuel Cell Capability as Backup Power
- Demonstrate Fuel Cell Automatic Startup Capability
- Advance PEM Technology
- Promote PEM Marketplace Penetration

Ft. Lewis Army Base **Demonstration**

ReliOn Inc. **Proposer**

Location **Gray Army Airfield Ft. Lewis Army Base**

Tacoma, WA

Fuel Cells ReliOn I-1000

Power Output 1kW

Fuel Cell Load Backup Power for Instrument Landing System (ILS)

July 16, 2004 Installation Date

Independence1000TM Fuel Cell Statistics

Product Spec	ifications	Independence 1000™
Physical	Dimensions	17.25"w x 25.12" d x 20.5" h
		(44cm w x 70cm d x 51cm h)
	Weight	152 lbs / 69 kg
	Mounting	19" or 24" rack mount configurations
Performance	Rated net power	Continuous 1000 Watts*
	Rated current	40A, 20A or 8A, depending on voltage
	DC voltage range	24, 48, or 125 VDC nominal
	Estimated MTBF	40,000 hours
Fuel	Composition	Standard industrial grade hydrogen
		(99.95%)
	Supply pressure to unit	25 to 100 psig
		172 to 689 KPag
		1.72 bar to 6.89 bar
	Consumption	7.5 slpm @ 500 Watts
		15 slpm @ 1000 Watts
	Hydrogen Storage	N/A
	Capacity	
Operation	Ambient temperature	0°C to 46°C
		32°F to 115°F
	Relative humidity	0-90%
	Altitude	-197 ft. to 13,800 ft.
	Location	Indoors
Safety	Compliance	CSA
		CE
Emissions	Water	Max. 30mL / kWh
	Noise	53 dBA @ 1 meter

* 1000 Watts 0°C to 40°C; 850 Watts at 46°C

US Army Corps of Engineers

Fuel Cell System Locations

Outer Marker Beacon

Middle Marker Beacon

Glide Slope

Localizer

US Army Corps of Engineers

Engineer Research & Development Center

Fuel Cell System Operating Procedure

- 60 Minute AC Grid Power Loss Simulation
 - 1Time Per Day
 - 7 Days Per Week
- Automatic Startup of Fuel Cell System
 - Provide Power to Load
- Monitor Commercial AC Grid for Power Failure
 - Upon Failure
 - Automatic Startup of Fuel Cell System
 - Provide 48kWh to Critical Equipment

Hydrogen Supply System

- Industrial Grade Hydrogen
 - Six 285 ft³ Bottles
 - LHV 266.3(Btu/scf)

- 48 kWh Total Capacity
- Delivery Every Six Weeks

Fort Lewis Performance Summary

(4 Units) **July 16, 2004 – August 31, 2005**

Total Run Time	1,573 hrs
Attempted Start Ups	1,592
Actual Start Ups	1,569
Reliability	98.6%
Availability	98.8%
Capacity Factor	0.6%
 Total Electric Output 	229.6 kWh
Avg. Output for Site	0.15 kW
Electrical Efficiency	18.7%

Fort Lewis Outage Summary

(4 Units) July 16, 2004 – August 31, 2005

Scheduled Outages	1
 Scheduled Outage Hours 	0.4 Hrs
 Unscheduled Outages 	23
 Unscheduled Outage Hours 	24 Hrs

Montana Army National Guard Demonstration

Proposer

Montana State University-Billings

Location

Montana Army National Guard Billings, MT

Fuel Cells

Power Output

Plug Power GenSys[™] 5CS 5kW

Fuel Cell Load

Prime Power for Armed Forces Reserve Center

Installation Date

November 16, 2004

Fuel Cell System Location

United States Armed Forces Reserve Center

Montana Army National Guard Performance Summary

November 16, 2004 – September 30, 2005

Total	Run	Time

Availability

Capacity Factor

Total Electric Output

Avg. Output for Site

Electrical Efficiency

Thermal Efficiency

7,090 hrs

97.2%

49.0%

17,893 kWh

2.52 kW

26.4%

20.5%

Montana Army National Guard Outage Summary

November 16, 2004 – September 30, 2005

Ochodulod Odlagos		Scheduled	Outages	4
-------------------	--	-----------	---------	---

- Scheduled Outage Hours 51.6 Hrs
- Unscheduled Outages
 8
- Unscheduled Outage Hours 153.4 Hrs

www.dodfuelcell.com

US Army Corps of Engineers

Engineer Research & Development Center